Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012225

RESUMEN

Regulation at the RNA level by RNA-binding proteins (RBPs) and microRNAs (miRNAs) is key to coordinating eukaryotic gene expression. In plants, the importance of miRNAs is highlighted by severe developmental defects in mutants impaired in miRNA biogenesis. MiRNAs are processed from long primary-microRNAs (pri-miRNAs) with internal stem-loop structures by endonucleolytic cleavage. The highly structured stem-loops constitute the basis for the extensive regulation of miRNA biogenesis through interaction with RBPs. However, trans-acting regulators of the biogenesis of specific miRNAs are largely unknown in plants. Therefore, we exploit an RNA-centric approach based on modified versions of the conditional CRISPR nuclease Csy4* to pull down interactors of the Arabidopsis pri-miR398b stem-loop (pri-miR398b-SL) in vitro. We designed three epitope-tagged versions of the inactive Csy4* for the immobilization of the protein together with the pri-miR398b-SL bait on high affinity matrices. After incubation with nucleoplasmic extracts from Arabidopsis and extensive washing, pri-miR398b-SL, along with its specifically bound proteins, were released by re-activating the cleavage activity of the Csy4* upon the addition of imidazole. Co-purified proteins were identified via quantitative mass spectrometry and data sets were compared. In total, we identified more than 400 different proteins, of which 180 are co-purified in at least two out of three independent Csy4*-based RNA pulldowns. Among those, the glycine-rich RNA-binding protein AtRZ-1a was identified in all pulldowns. To analyze the role of AtRZ-1a in miRNA biogenesis, we determined the miR398 expression level in the atrz-1a mutant. Indeed, the absence of AtRZ-1a caused a decrease in the steady-state level of mature miR398 with a concomitant reduction in pri-miR398b levels. Overall, we show that our modified Csy4*-based RNA pulldown strategy is suitable to identify new trans-acting regulators of miRNA biogenesis and provides new insights into the post-transcriptional regulation of miRNA processing by plant RBPs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo
2.
PLoS One ; 14(3): e0210940, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30840628

RESUMEN

Biosensors have emerged as a valuable tool with high specificity and sensitivity for fast and reliable detection of hazardous substances in drinking water. Numerous substances have been addressed using synthetic biology approaches. However, many proposed biosensors are based on living, genetically modified organisms and are therefore limited in shelf life, usability and biosafety. We addressed these issues by the construction of an extensible, cell-free biosensor. Storage is possible through freeze drying on paper. Following the addition of an aqueous sample, a highly efficient cell-free protein synthesis (CFPS) reaction is initiated. Specific allosteric transcription factors modulate the expression of 'superfolder' green fluorescent protein (sfGFP) depending on the presence of the substance of interest. The resulting fluorescence intensities are analyzed with a conventional smartphone accompanied by simple and cheap light filters. An ordinary differential equitation (ODE) model of the biosensors was developed, which enabled prediction and optimization of performance. With an optimized cell-free biosensor based on the Shigella flexneri MerR transcriptional activator, detection of 6 µg/L Hg(II) ions in water was achieved. Furthermore, a completely new biosensor for the detection of gamma-hydroxybutyrate (GHB), a substance used as date-rape drug, was established by employing the naturally occurring transcriptional repressor BlcR from Agrobacterium tumefaciens.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas Fluorescentes Verdes/análisis , Hidroxibutiratos/análisis , Drogas Ilícitas/análisis , Metales Pesados/análisis , Detección de Abuso de Sustancias/métodos , Contaminantes Químicos del Agua/análisis , Sistema Libre de Células , Humanos , Violación/diagnóstico
3.
Artículo en Inglés | MEDLINE | ID: mdl-26074790

RESUMEN

Several recent studies in invertebrates as well as vertebrates have demonstrated that neuronal response characteristics of sensory neurons can be profoundly affected by an animal's locomotor activity. The functional consequences of such state-dependent modulation have been a matter of intense debate. In flies, a particularly interesting finding was that tethered walking or flying causes not only general response enhancement of visual motion-sensitive neurons, but also broadens their temporal frequency tuning towards higher values. However, in other studies such state-dependent alterations of neuronal tuning functions were not found. We hypothesize that these discrepancies were due to different adaptation levels of the motion-sensitive neurons, resulting from the use of different stimulation protocols. This is plausible, because the strength of adaptation during ongoing stimulation was shown to be affected by chlordimeform (CDM), an agonist of the insect neuromodulator octopamine, which mediates state-dependent modulation. Our results show that CDM causes broadening of the temporal frequency tuning of the blowfly's visual motion-sensitive H1 neuron only in the adapted state, but not prior to the presentation of adapting motion. Thus, our study indicates that seemingly conflicting results on the locomotor state-dependence of neuronal tuning functions are consistent when considering the neurons' adaptation level. Moreover, it demonstrates that stimulation history has to be considered when the significance of state-dependent modulation of sensory processing is interpreted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...